Quantification of Spice Mixture Compositions by Electronic Nose: Part I. Experimental Design and Data Analysis Using Neural Networks
نویسندگان
چکیده
A quantitative procedure was developed to predict the composition of ternary ground spice mixtures using an electronic nose. Basil, cinnamon, and garlic were mixed in different compositions and presented to an enose. Nineteen training mixtures were used to build predictive models. Model performance was tested using 5 other mixtures. Three neural network structures—multilayer perceptron (MLP), MLP using principal component analysis as a preprocessor (PCA-MLP), and the time-delay neural network (TDNN)—were used for predictive model building. All 3 neural network models predicted the testing mixtures’ compositions with a mean square error (MSE) equal or less than 0.0051 (in a fraction domain where sum of fractions = 1). The TDNN provided the smallest MSE.
منابع مشابه
Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملOptimum Design of Liquified Natural Gas Bi-lobe Tanks using Finite Element, Genetic Algorithm and Neural Network
A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genet...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملDesign of Riprap Stone Around Bridge Piers Using Empirical and Neural Network Method
An attempt was made to develop a method for sizing stable riprap around bridge piers based on a huge amount of experimental data, which is available in the literature. All available experimental data for circular as well as round-nose-and-tail rectangular piers were collected. The data for rectangular piers, with different aspect ratios, aligned with the flow or skewed at different angles to th...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کامل